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Prevalence and mortality of COVID-19
are associated with the L55M functional
polymorphism of Paraoxonase 1

Mostafa Saadat1

Abstract
Introduction: Accumulating evidence recommends that infectious diseases including coronavirus disease 2019 (COVID-
19) are often associated with oxidative stress and inflammation. Paraoxonase 1 (PON1, OMIM: 168,820), a member of the
paraoxonase gene family, has antioxidant properties. Enzyme activity of paraoxonase depends on a variety of influencing
factors such as polymorphisms of PON1, ethnicity, gender, age, and a number of environmental variables. The PON1 has
two common functional polymorphisms, namely, Q192R (rs662) and L55M (rs854560). The R192 and M55 alleles are
associated with increase and decrease in enzyme activity, respectively.
Objective: The present study was conducted to investigate the possible association of rs662 and rs854560 polymorphisms
with morbidity and mortality of COVID-19.
Methods: Data for the prevalence, mortality, and amount of accomplished diagnostic test (per 106 people) on 25 November
2020 from 48 countries were included in the present study. The Human Development Index (HDI) was used as a potential
confounding variable.
Results: The frequency of M55 was positively correlated with the prevalence (partial r = 0.487, df = 36, p = 0.002) and
mortality of COVID-19 (partial r = 0.551, df = 36, p < 0.001), after adjustments for HDI and amount of the accomplished
diagnostic test as possible confounders.
Conclusions: This means that countries with higher M55 frequency have higher prevalence and mortality of COVID-19.
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Introduction

In late December 2019, patients having a mysterious
pneumonia were discovered in Wuhan, China. Today, it is
named coronavirus disease 2019 (COVID-19). COVID-19
has rapidly spread from China to other countries worldwide,1

and until now (25 November 2020), more than 61 million
confirmed cases with about 1.4 million deaths have been
reported from all around the world.

A lot of studies have indicated that various genetic and
environmental elements are involved in etiology and prog-
nosis of infectious diseases.2–8 Therefore, it is really im-
portant to find out the factors that play a role in COVID-19
spreading. It should be noted that at the population level,
understanding the relationship between the population ge-
netic backgrounds as well as environmental factors and
epidemiologic parameters of the COVID-19 plays a strategic

role in making the best decision to control and prevent the
pandemic.

Paraoxonase 1 (PON1, OMIM: 168,820), a member of the
paraoxonase gene family, has antioxidant properties. Enzyme
activity of paraoxonase depends on a variety of influencing
factors such as polymorphisms of PON1, ethnicity, gender,
age, and a number of environmental variables. The PON1 has
two common functional polymorphisms, that is, Q192R
(rs662) and L55M (rs854560).9 It is well acknowledged that
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the R192 and M55 alleles are related with augmented and
reduced enzyme activity, respectively.10

Infectious diseases are often associated with oxidative
stress and inflammation.11,12 Low-serum PON1 activity is
observed in bacterial and viral infections.13–16 In septic
patients, serum paraoxonase activity is remarkably de-
creased.14 Accumulating evidence commends that oxidative
stress increases the risk of infection of the human coronavirus
HCoV 229E17 and the SARS-CoV-2.18–20

There are limited ecologic and genetic association
studies on relations between common genetic variations
and morbidity/mortality of COVID-19.21–25 However,
there is no study considering the correlation between PON1
polymorphisms and COVID-19. The rs662 and rs854560
are common functional polymorphisms. On the other hand,
COVID-19 is associated with oxidative stress and inflam-
mation. These provide solid rationale to carry out the present
study.

Methods

Data for the prevalence, mortality, and amount of accom-
plished diagnostic test (per 106 people) on 25 November
2020 were achieved from the website www.worldometers.
info/coronavirus/countries. The M55 and R192 allelic fre-
quencies in different countries were acquired from preceding
reports (Table 1). The amount of COVID-19 diagnostic tests
accomplished per one million of the population in each
country was also used as an additional variable.

The Human Development Index (HDI) is a statistic
compound index which reflects three very important di-
mensions of human development, including life expectancy
at birth, education (including literacy rate, gross enrollment
ratio at different levels, and net attendance ratio), and the
gross national income (PPP) per capita. The HDI is the
geometric mean of the above-mentioned normalized indices.
The HDI is estimated for countries. Countries with higher life
expectancy, income, and educational levels have higher HDI
value. To measure the level of human development for a
given country, as well as to compare with other countries,
researchers frequently used the HDI values. The HDI values
are calculated annually and reported by the United Nations
Development Program’s Human Development Report Of-
fice. The 2019 report is the latest one, which was used in the
present study.

Data from 48 countries were used in the analysis. These
countries are: Argentina, Australia, Austria, Benin, Brazil,
Canada, Chile, People’s Republic of China, Costa Rica,
Cuba, Czech Republic, Denmark, Dominican, Egypt, Esto-
nia, Ethiopia, Finland, France, Germany, Greece, Hungary,
India, Iran, Ireland, Italy, Japan, Malaysia, Mexico, Morocco,
The Netherlands, Peru, Poland, Portugal, Qatar, Saudi
Arabia, Serbia, Singapore, South Africa, South Korea, Spain,
Sweden, Switzerland, Thailand, Tunisia, Turkey, United
Kingdom, Ukraine, and United Sates of America.

Pearson correlation analysis and partial correlation anal-
ysis were used to examine the relationship between the se-
lected epidemiological indices and the explanatory variables.
Analyses were achieved using SPSS statistical software
(Chicago, IL, USA, version 24). A p < 0.05 was considered a
significant difference.

Results

Table 2 shows the Pearson correlation coefficients between
the study variables. The frequency of the M55 allele is
positively associated with the prevalence (r = 0.499, df = 38,
p = 0.001) and mortality (r = 0.414, df = 38, p = 0.008) of
COVID-19. However, the allelic frequency of R192 was not
associated with the prevalence and mortality.

It should be noted that the prevalence of COVID-19 was
significantly associated with HDI (r = 0.368, df = 46, p =
0.010) and test (r = 0.306, df = 46, p = 0.035). There was
significant relationship between HDI and the allelic fre-
quency of R192 (r = 0.297, df = 46, p = 0.040). Therefore, it
seems that HDI and the number of performed test per 106

people act as possible confounders. In order to statistically
rule out the influence of these variables on the associations
between prevalence/mortality of COVID-19 and the allelic
frequencies, the partial correlation coefficients were calcu-
lated. As it is summarized in Table 3, the frequency of M55
was positively correlated with the prevalence (partial r =
0.487, df = 36, p = 0.002) and mortality of COVID-19 (partial
r = 0.551, df = 36, p < 0.001), after adjustments for possible
confounders. It means that countries with higher M55 fre-
quency have higher prevalence/mortality of COVID-19. It
should be noted that the R192 allelic frequency was not
correlated with the prevalence/mortality of COVID-19 (Table
3).

Discussion

Current results reveal that the allelic frequency of M55 is
positively associated with the prevalence and mortality of
COVID-19 (Tables 2 and 3). This is in very good agreement
with the decrease of paraoxonase activity in the M55 vari-
ant,10 rise of oxidative stress in COVID-19,18–20 and re-
duction of serum PON1 activity in septic patients.14

A meta-analysis indicates that hypertension raises the
risks of severity and fatality of COVID-19.26,27 The inverse
association between PON1 activity and the risk of cardio-
vascular and inflammatory diseases has been reported
previously.9,28,29 It might be concluded that low activity of
PON1 is a common risk factor for susceptibility to hyper-
tension and for risk of mortality due to COVID-19 in hy-
pertensive patients.

In current pandemic, men are significantly more likely to
die than women.29–31 It is worth noting that serum para-
oxonase activity is higher in females.32 Age of patients and
co-morbidities are significant predictors of mortality due to
COVID-19.27,30,31 Surprisingly, this is may also be explained
by the reducing of serum PON1 activity with age and the
association between low PON1 activity and the risk of
cardiovascular disease.9,28

In previous pandemics and in the current COVID-19
pandemic, ethnicity has been involved.31 Prevalence and
mortality of COVID-19 are lower in East Asians compared
with Caucasians. Actually, ethnicity has a very complex
nature. Ethnic groups have many differences with each other
in their gene pools and environmental factors such as socio-
economic factors and cultural behaviors. The variations in the
PON1 activity, which are attributed to both L55M and
Q192R polymorphisms, are greater among Caucasians than
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Table 1. Prevalence, mortality, and amount of accomplished diagnostic tests of COVID-19 in 48 countries, the allelic frequency of the
PON1 L55M and Q192R polymorphisms, and Human Development Index in the study.

Country
Prevalence (per
106 population)

Mortality (per 106
population)

Number of COVID-19 diagnostic
tests performed (per 106
population)

Allelic frequency
M55 (%)

Allelic frequency
R192 (%) HDI

Argentina 30,651 831.0 82,498 32.51 27.59 0.830
Australia 1087 35.0 383,743 36.99 26.79 0.938
Austria 28,859 295.0 327,955 35.67 25.48 0.914
Benin 243 4.0 24,003 NA 61.22 0.520
Brazil 28,930 801.0 102,736 27.29 42.27 0.761
Canada 9174 309.0 292,823 6.13 43.06 0.922
Chile 28,364 789.0 267,884 NA 39.64 0.847
China 60 3.0 111,163 7.11 52.64 0.758
Costa Rica 26,310 327.0 74,614 NA 24.32 0.794
Cuba 709 12.0 93,742 35.04 36.92 0.778
Czech 47,141 710.0 277,749 43.17 46.36 0.891
Denmark 12,793 138.0 1215761 38.00 30.00 0.930
Dominican 12,798 213.0 63,418 26.45 50.24 0.745
Egypt 1107 64.0 9699 39.99 38.57 0.700
Estonia 7944 73.0 341,449 35.89 24.80 0.882
Ethiopia 923 14.0 13,868 NA 40.83 0.470
Finland 4086 70.0 335,209 38.68 25.01 0.925
France 33,216 775.0 307,641 36.54 29.69 0.891
Germany 11,726 183.0 332,083 33.51 27.93 0.939
Greece 9353 183.0 220,207 36.55 23.52 0.872
Hungary 19,241 426.0 160,441 25.45 33.33 0.845
India 6689 98.0 97,326 18.65 36.56 0.647
Iran 10,594 547.0 70,042 50.81 34.22 0.797
Ireland 14,352 410.0 385,411 27.48 29.75 0.942
Italy 24,507 861.0 346,809 43.63 26.85 0.883
Japan 1072 16.0 26,373 6.59 53.66 0.915
Malaysia 1839 11.0 79,226 28.37 31.55 0.804
Mexico 8188 793.0 21,185 20.11 49.48 0.767
Morocco 9074 149.0 103,934 27.00 23.50 0.676
The
Netherlands

29,076 531.0 227,047 37.12 29.13 0.933

Peru 28,787 1078.0 150,284 NA 46.07 0.759
Poland 24,436 396.0 160,019 36.90 26.06 0.872
Portugal 26,904 405.0 427,235 60.81 29.73 0.850
Qatar 49,096 84.0 389,137 32.90 38.00 0.848
Saudi Arabia 10,164 166.0 268,384 NA 26.47 0.857
Serbia 16,119 151.0 192,870 32.00 28.05 0.799
Singapore 9915 5.0 757,916 7.19 60.94 0.935
South Africa 13,010 356.0 89,838 NA 36.83 0.705
South Korea 619 10.0 57,839 5.58 55.73 0.906
Spain 34,700 942.0 468,697 41.66 30.42 0.893
Sweden 22,768 647.0 287,821 39.80 25.30 0.937
Switzerland 35,653 506.0 302,224 58.94 25.86 0.946
Thailand 56 0.9 13,995 4.97 34.72 0.765
Tunisia 7693 251.0 37,005 32.42 16.89 0.739
Turkey 5522 152.0 209,360 35.39 37.57 0.806
United
Kingdom

22,887 831.0 615,299 36.24 28.25 0.920

Ukraine 15,171 263.0 97,271 NA 34.96 0.750
USA 39,598 808.0 560,928 37.96 28.10 0.920

References: [10,33–65].
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Asians and Africans.10 Taken together, at least in part, allelic
frequency and effects of ethnicity-related factors on the
PON1 activity may explain the difference in mortality and
prevalence of COVID-19 between Eastern and Western
countries. Taken together, the MM homozygous individuals
showed considerably lower PON1 enzyme activity and the
reduction in PON1 activity is greater among Caucasians than
Asians and Africans.10 Serum paraoxonase activity is higher
in females,32 and PON1 activity is negatively correlated with
age.9,28 These facts may predict, at least in part, different
prevalence/mortality of COVID-19 between ethnicities, age,
and gender groups.

Finally, a major limitation of the present study should be
acknowledged. We know that the rs662 and rs854560
polymorphic sites and other polymorphisms of the PON1
have strong linkage disequilibrium with each other.66 In this
study, the allelic frequencies in countries were estimated
using published articles. However, there were no data on
haplotypic frequencies in those articles. The present study is
an ecological study, and it cannot be judged that people who
carry the M55 allele of the rs854560 polymorphism are
more susceptible to be infected by SARS-CoV-2 or have
higher mortality rates due to COVID-19 than the carriers of
the L55 allele. Therefore, in the interpretation of the present
findings, care must be taken not to fall into the trap of
ecological fallacy. However, it should be noted that there are
some genetic association studies using case-control
design67,68 which confirmed findings of previous eco-
logic studies.22,25 In order to generalize the findings of the
present study at the individual level, further observational
studies (such as case-controls and cohorts) are necessary to
examine gene-environment interactions and combinations
of polymorphisms in susceptibility to and outcome of
COVID-19.

Conclusions

The present ecological study analyzed data of prevalence and
mortality of COVID-19 from 48 countries. Statistical anal-
ysis revealed that the allelic frequency of M55 is positively
correlated with the mortality of COVID-19. This means that
countries with higher M55 frequency have higher prevalence
and mortality of COVID-19.
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